Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.
نویسندگان
چکیده
We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.
منابع مشابه
Multiscale Molecular Dynamics and the Reverse Mapping Problem
Multiscale techniques are becoming increasingly important for molecular simulation as a result of interest in increasingly complex problems involving events occurring over multiple time and length scales. Here, inspired by the success of the multiscale quantum mechanics / molecular mechanics (QM/MM) methods, we introduce a hybrid, adaptive resolution, multiscale molecular dynamics method that c...
متن کاملComputational study of Anticancer Dasatinib for drug delivery systems
Dasatinib is a tyrosine kinase inhibitor (TKI) that is used to treat chronic myeloid leukemia and in the management of ulcerative colitis (UC) and to provide appropriate results in treatment. Dasatinib is significantly higher and faster than full cytogenetic and large molecular responses as compared to imatinib. In the recent study, using the NMR data, the frequency and thermochemical propertie...
متن کاملHPC in Computational Chemistry: Bridging Quantum Mechanics, Molecular Dynamics, and Coarse-Grained Models
The past several decades have witnessed tremendous strides in the capabilities of computational chemistry simulations, driven in large part by the extensive parallelism offered by powerful computer clusters and scalable parallel programming methods. However, cluster computing has also seen flattening processor clock frequencies, unsustainable increases in power requirements, and more complicate...
متن کاملQM/MM methods for biomolecular systems.
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the ...
متن کاملComputational Study of Anticancer Dasatinib for Drug Delivery Systems
Dasatinib is a tyrosine kinase inhibitor (TKI) that is used to treat chronic myeloid leukemiaand in the management of ulcerative colitis (UC) and to provide appropriate results in treatment. Dasatinib is significantly higher and faster than full cytogenetic and large molecular responses as compared to imatinib. In the recent study, using the NMR data, thermochemical properties of the dasa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2015